อุปกรณ์คอมพิวเตอร์

อุปกรณ์คอมพิวเตอร์

วันพุธที่ 12 สิงหาคม พ.ศ. 2552

RAM (Static RAM and Dynamic RAM)


แรมแบบ DDRAM

แรม ( RAM: Random Access Memory หน่วยความจำเข้าถึงโดยสุ่ม หรือหน่วยความจำชั่วคราว) เป็นหน่วยความจำหลัก ที่ใช้ในระบบคอมพิวเตอร์ยุคปัจจุบัน หน่วยความจำชนิดนี้ อนุญาตให้เขียนและอ่านข้อมูลได้ในตำแหน่งต่างๆ อย่างอิสระ และรวดเร็วพอสมควร ซึ่งต่างจากสื่อเก็บข้อมูลชนิดอื่นๆ อย่างเทป หรือดิสก์ ที่มีข้อจำกัดในการอ่านและเขียนข้อมูล ที่ต้องทำตามลำดับก่อนหลังตามที่จัดเก็บไว้ในสื่อ หรือมีข้อกำจัดแบบรอม ที่อนุญาตให้อ่านเพียงอย่างเดียว

ข้อมูลในแรม อาจเป็นโปรแกรมที่กำลังทำงาน หรือข้อมูลที่ใช้ในการประมวลผล ของโปรแกรมที่กำลังทำงานอยู่ ข้อมูลในแรมจะหายไปทันที เมื่อระบบคอมพิวเตอร์ถูกปิดลง เนื่องจากหน่วยความจำชนิดนี้ จะเก็บข้อมูลได้เฉพาะเวลาที่มีกระแสไฟฟ้าหล่อเลี้ยงเท่านั้น

ประวัติ


แรมขนาด 4 เมกะบิตของเครื่อง VAX 8600 ประมาณปี 2529

เครื่องคอมพิวเตอร์ใช้แรมในการเก็บโปรแกรมและข้อมูลระหว่างการประมวลผล คุณสมบัติที่สำคัญประการหนึ่งของแรมคือความเร็วที่ใช้เข้าหนึ่งตำแหน่งต่างๆ ในหน่วยความจำมีค่าเท่าๆ กัน ซึ่งต่างจากเทคโนโลยีอื่นบางอย่างซึ่งต้องใช้เวลารอกว่าที่ บิตหรือ ไบต์จะมาถึง ระบบแรกๆ ที่ใช้ หลอดสุญญากาศทำงานคล้ายกับแรมในสมัยปัจจุบันถึงแม้ว่าอุปกรณ์จะเสียบ่อยกว่ามาก หน่วยความจำแบบแกน เฟอร์ไร์ ( core memory) ก็มีคุณสมบัติในการเข้าถึงข้อมูลแบบเดียวกัน แนวความคิดของหน่วยความจำที่ทำจากหลอดและแกนเฟอร์ไรต์ก็ยังใช้ในแรมสมัยใหม่ที่ทำจาก วงจรรวม หน่วยความจำหลักแบบอื่นมักเกี่ยวข้องกับอุปกรณ์ที่มีเวลาเข้าถึงข้อมูลไม่เท่ากัน เช่น หน่วยความจำแบบดีเลย์ไลน์ (delay line memory) ที่ใช้คลื่นเสียงในท่อบรรจุ ปรอทในการเก็บข้อมูลบิต หน่วยความจำแบบดรัม ซึ่งทำงานใกล้เคียง ฮาร์ดดิสก์ในปัจจุบัน เป็นข้อมูลในรูปของแม่เหล็กในแถบแม่เหล็กรูปวงกลม

แรมหลายชนิดมีคุณสมบัติ volatile หมายถึง ข้อมูลที่เก็บจะสูญหายไปถ้าปิดเครื่องคอมพิวเตอร์ แรมสมัยใหม่มักเก็บข้อมูลบิตในรูปของ ประจุไฟฟ้าใน ตัวเก็บประจ ดังเช่นกรณี ไดนามิคแรม หรือในรูปสถานะของ ฟลิปฟล็อป ดังเช่นของ สแตติกแรม ปัจจุบันมีการพัฒนาแรมแบบ non-volatile ซึ่งยังเก็บรักษาข้อมูลถึงแม้ว่าไม่มีไฟเลี้ยงก็ตาม เทคโนโลยีที่ใช้ ก็เช่น เทคโนโลยีนาโนทิวจากคาร์บอน (carbon nanotube) และ ปรากฏการณ์ magnetic tunnel

ในฤดูร้อนปี พ.ศ. 2546 มีการเปิดตัวแรมแบบแม่เหล็ก ( Magnetic RAM, MRAM) ขนาด 128 Kib ซึ่งผลิตด้วยเทคโนโลยีระดับ 0.18 ไมครอน หัวใจของแรมแบบนี้มาจากปรากฏการณ์ magnetic tunnel ในเดือนมิถุนายน พ.ศ. 2547 บริษัท อินฟินิออน (Infineon) เปิดตัวต้นแบบขนาด 16 Mib อาศัยเทคโนโลยี 0.18 ไมครอนเช่นเดียวกันสำหรับหน่วยความจำจากคอร์บอนนาโนทิว บริษัท แนนเทโร (Nantero) ได้สร้างต้นแบบขนาน 10 GiB ในปี พ.ศ. 2547ในเครื่องคอมพิวเตอร์ สามารถจองแรมบางส่วนเป็นพาร์ติชัน ทำให้ทำงานได้เหมือนฮาร์ดดิสก์แต่เร็วกว่ามาก มักเรียกว่า แรมดิสค์ (ramdisk)

ประเภทของแรม
  • SRAM (Static RAM)
  • NV-RAM (Non-volatile RAM)
  • DRAM (Dynamic RAM)
  • Dual-ported RAM
  • Video RAM
  • WRAM
  • MRAM
  • FeRAM

รูปแบบของโมดูลแรม


โมดูลแรมแบบต่างๆ จากบนลงล่าง: DIP, SIPP, SIMM 30 พิน, SIMM 72 พิน, DIMM และ DDR DIMM

แรมสารกิ่งตัวนำมักผลิตในรูปของวงจรรวมหรือไอซี ไอซีมักจะนำมาประกอบในรูปของโมดูลสำหรับเสียบ มาตรฐานโมดูลแบบต่างๆ ได้แก่

  • Single in-line Pin Package (SIPP)
  • Dual in-line Package (DIP)
  • Single in-line memory module (SIMM)
  • Dual in-line memory module (DIMM)
  • โมดูลแรมของบริษัท แรมบัส ( Rambus) จริงๆ แล้วคือ DIMM แต่มักเรียกว่า RIMM เนื่องจากสล็อตที่เสียบแตกต่างจากแบบอื่น
  • Small outline DIMM (SO-DIMM) เป็น DIMM ที่มีขนาดเล็ก ใช้กับเครื่องคอมพิวเตอร์แล็บท็อป มีรุ่นขนาด 72 (32 บิต), 144 (64 บิต), 200 (72 บิต) พิน
  • Small outline RIMM (SO-RIMM)


แรม


สแตติกแรมและไดนามิกส์แรม (Static RAM and Dynamic RAM)
หน่วยความจำที่ใช้งานส่วนใหญ่และมีปริมาณความจุสูงได้แก่ พวก RAM ด้วยเทคโนโลยี RAM ที่ใช้มีการแบ่งแยกออกเป็นสองกลุ่มคือ สแตติกแรม และไดนามิกส์แรม
สแตติกแรม (Static RAM - SRAM) เป็หน่วยความจำที่ใช้สถานะทางวงจรไฟฟ้าเป็นที่เก็บข้อมูล โดยวงจรเล็ก ๆ แต่ละวงจรจะเก็บข้อมูล "0" "1" และคงสถานะไว้จนกว่าจะมีการสั่งเปลี่ยนแปลง

ไดนามิกส์แรม (DRAM-Dynamic RAM) เป็นหน่วยความจำที่ใช้หลักการบรรจุประจุลงในหน่วยเล็ก ๆ ที่ทำหน้าที่เหมือนตัวเก็บประจุ แต่เป็นจากตัวเก็บประจุไฟฟ้าเล็ก ๆ นี้ ทำจากสารกึ่งตัวนำที่มีคุณสมบัติคงค่าแรงดันไว้ได้ชั่วขณะ จึงต้องมีกลไกการรีเฟรชหรือทำให้ค่าคงอยู่ได้
จุดเด่นของ DRAM คือ มีความหนาแน่นต่อชิพสูงมากเมื่อเทียบกับ SRAM ดังนั้นจึงเป็นที่นิยมใช้เพราะมีราคาถูกกว่ามาก อย่างไรก็ดีการเชื่อมต่อเข้ากับวงจรคอมพิวเตอร์ของ DRAM มีข้อยุ่งยากมากกว่า SRAM

Bandwidth

Bandwidth คือ
Bandwidth
เป็นคำที่ใช้วัดความเร็วในการส่งข้อมูลของอินเทอร์เน็ต ซึ่งโดยมากเรามักวัดความเร็วของการส่งข้อมูลเป็น bps (bit per second) , Mbp (bps*1000000) เช่น Bandwidth ของการใช้สายโทรศัพท์ในประเทศไทย เท่ากับ 14.4 Kbps,Bandwidth ของสายส่งข้อมูลของ KSC ที่ใช้ในการเชื่อมต่อกับอเมริกาเท่ากับ 2 Mbps เป็นต้น แต่ก่อนที่เราจะเข้าสู่บทความมารู้จักก่อนว่าอะไรคือ Bandwidth และ Latency ความหมาย Bandwidth คือ ความกว้างของช่องทางในการรับ-ส่งข้อมูล ส่วน Latency คือ เวลาที่ใช้ไปในการเข้าถึงข้อมูลของหน่วยความจำ เมื่อเรารู้ความหมายกันแล้วคราวนี้เรามารู้จักถึงหลักการต่างๆ ของ Bandwidth และ Latency ในการพิจารณาการรับ-ส่งข้อมูลบนระบบบัสหลายคนมักจะนึกถึง Bus Bandwidth (Bandwidth ก็คือความกว้างของเส้นทางในการส่งข้อมูล ที่เราสามารถเปรียบเทียบได้กับเลนถนน ยิ่งมีเลนกว้างเท่าไรรถยนต์ซึ่งเปรียบได้กับข้อมูลก็สามารถวิ่งได้สะดวกมากขึ้นเท่านั้น) ที่ใช้ในการรับ-ส่งข้อมูล ซึ่งพิจารณาจากข้อมูลที่รับ-ส่งบนระบบบัส Bus Bandwidth ด้วยปริมาณจำนวนข้อมูลของเลข single number (0 หรือ 1) ที่ระบบบัสสามารถรองรับได้ แต่ปริมาณข้อมูลของเลข single number อาจแปรผันได้ตามเวลา เราจึงพิจารณาการรับ-ส่งข้อมูลผ่านทาง Bus Bandwidth ด้วย Peak bandwidth Bus หรือ ความกว้างสูงสุดในการรับ-ส่งข้อมูลของบัส ซึ่งวัดด้วยจำนวนข้อมูลสูงสุดที่ รับ-ส่งกันระหว่างซีพียูและแรมภายในหนึ่งคาบเวล จากความเร็วสัญญาณนาฬิการะหว่างหน่วยความจำและซีพียูจากรูปที่ 1 ถ้าเรามาคำนวณหา Bandwidth ของบัสที่มีความเร็วสัญญาณนาฬิการะหว่างหน่วยความจำและซีพียู ที่สัญญาณนาฬิกา 100 เมกะเฮิรตซ์ โดยที่มีการรับ-ส่งข้อมูลจำนวน 8 ไบต์ในแต่ละหนึ่งรอบของสัญญาณนาฬิกา จะคำนวณออกมาได้ดังนี้ 8 bytes * 100MHz = 800 MB/s และถ้าหากเราคำนวณหา Bandwidth ของบัสที่มีความเร็วสัญญาณนาฬิการะหว่างหน่วยความจำและซีพียูที่ 133 เมกะเฮิรตซ์ โดยที่มีการรับ-ส่งข้อมูลจำนวน 8 ไบต์ในแต่ละหนึ่งรอบสัญญาณนาฬิกา จะคำนวณออกมาได้ดังนี้ 8 bytes * 133MHz = 1064 MB/s ซึ่งตัวเลข Bandwidth ที่ได้นี้เป็นพียงตัวเลขทางทฤษฎีที่บอกถึงปริมาณของข้อมูลที่เข้าสู่ซีพียูในแต่ละวินาที ในความเป็นจริง Bandwidth ของระบบจริงอาจมีค่าน้อยกว่าที่คำนวณเพียงเล็กน้อย Bandwidth ในทางปฏิบัติ ระบบบัสที่ผ่านมาจะมีลักษณะการส่งผ่านข้อมูลแบบทางเดียว จึงทำให้ไม่สามารถรับและส่งข้อมูลในเวลาเดียวกัน จึงต้องผลัดกันส่งและรับข้อมูลทำให้ความเร็วในการส่งผ่านข้อมูลช้า เปรียบเทียบระบบบัสได้กับการสื่อสารผ่านทางวิทยุรับส่งโดยที่อีกฝ่ายหนึ่งเป็นฝ่ายพูดอีกฝ่ายจะต้องเป็นผู้รับฟัง เนื่องจากต้องผลัดกันรับส่งข้อมูลดังนั้นเมื่อซีพียูต้องการร้องข้อมูลจากหน่วยความจำหลัก (RAM) ซีพียูจะต้องร้องขอผ่านทาง Bus Control จากนั้น Bus Control จะร้องขอข้อมูลมาที่หน่วยความจำหลัก (RAM) เมื่อค้นหาข้อมูลที่ซีพียูต้องการได้แล้ว หน่วยความจำหลักจะส่งต่อข้อมูลให้ Bus Control กลับไปให้ซีพียู โดยทั้งหมดนี้กระทำบนบัสเดียวกัน ถ้าพิจารณาเวลาที่สูญเสียไปจากการร้องขอข้อมูลจาก Bus Control และที่ต้องเสียเวลารอหน่วยความจำหลักค้นหาข้อมูลที่ซีพียูต้องการแล้วจึงส่งข้อมูลที่ต้องการกลับไปสู่ Bus Control และส่งกลับไปสู่ซีพียูได้ ซึ่งทั้งหมดนี้จะเป็น Delay Time ที่มีผลต่อค่า Read Latency โดยที่ Read Latency หมายถึง เวลาที่ใช้ระหว่างการร้องขอข้อมูลจากซีพียูผ่านทาง Frontside Bus (FSB) สรุป ทฤษฎีของ Bandwidth นั้นได้ว่า ถ้าระบบบัสมี Bandwidth ที่กว้างก็ยิ่งจะดีต่อการรับ-ส่งข้อมูล